Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Mars Transit Life Support

2007-07-09
2007-01-3160
This paper considers the design of a life support system for transit to Mars and return to Earth. Because of the extremely high cost of launching mass to Mars, the Mars transit life support system must minimize the amount of oxygen, water, and food transported. The three basic ways to provide life support are to directly supply all oxygen and water, or to recycle them using physicochemical equipment, or to produce them incidentally while growing food using crop plants. Comparing the costs of these three approaches shows that physicochemical recycling of oxygen and water is least costly for a Mars transit mission. The long mission duration also requires that the Mars transit life support system have high reliability and maintainability. Mars transit life support cannot make use of planetary resources or gravity. It should be tested in space on the International Space Station (ISS).
Technical Paper

Lyophilization for Water Recovery III, System Design

2005-07-11
2005-01-3084
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Technical Paper

Lyophilization for Water Recovery II, Model Validation

2004-07-19
2004-01-2377
This paper presents results of research on a solid waste dryer, based of the process of lyophilization, which recovers water and stabilizes solid waste. A lyophilizer has been developed and tested that uses thermoelectric heat pumps (TECs) to recycle heat during drying. The properties of TECs facilitate direct measurement of heat flow rates, and heat flow data are used to evaluate a heat and mass transfer model of the thermoelectric lyophilizer. Data are consistent with the theoretical model in most respects. Practical problems such as insulation and vacuum maintenance are minor in this system. However, the model’s assumption of a uniformly retreating ice layer during drying is valid only for the first 30% of water removed. Beyond this point, a shrinking core or lens model is more appropriate. Heat transfer to the shrinking core surrounded by dried material is slow.
Technical Paper

Lyophilization for Water Recovery

2001-07-09
2001-01-2348
An energy-efficient lyophilization technique is being developed to recover water from highly contaminated spacecraft waste streams. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain water. To operate in microgravity, and to minimize power consumption, thermoelectric heat pumps can be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer is described and used to generate energy use and processing rate estimates.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

Lunar Base Life Support Failure Analysis and Simulation

2009-07-12
2009-01-2482
Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate possible responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids and nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a loss of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.
Journal Article

Lightweight Contingency Water Recovery System Concept Development

2008-06-29
2008-01-2143
The Lightweight Contingency Water Recovery System (LWC-WRS) harvests water from various sources in or around the Orion spacecraft in order to provide contingency water at a substantial mass savings when compared to stored emergency water supplies. The system uses activated carbon treatment (for urine) followed by forward osmosis (FO). The LWC-WRS recovers water from a variety of contaminated sources by directly processing it into a fortified (electrolyte and caloric) drink. Primary target water sources are urine, seawater, and other on board vehicle waters (often referred to as technical waters). The product drink provides hydration, electrolytes, and caloric requirements for crew consumption. The system hardware consists of a urine collection device containing an activated carbon matrix (Stage 1) and an FO membrane treatment element (or bag) which contains an internally mounted cellulose triacetate membrane (Stage 2).
Technical Paper

Integrated Atmosphere Revitalization System Description and Test Results

1983-07-11
831110
Regenerative-type subsystems are being tested at JSC to provide atmosphere revitalization functions of oxygen supply and carbon dioxide (CO2) removal for a future Space Station. Oxygen is supplied by an electrolysis subsystem, developed by General Electric, Wilmington, Mass., which uses the product water from either the CO2 reduction subsystem or a water reclamation process. CO2 is removed and concentrated by an electrochemical process, developed by Life Systems, Inc., Cleveland, Ohio. The concentrated CO2 is reduced in a Sabatier process with the hydrogen from the electrolysis process to water and methane. This subsystem is developed by Hamilton Standard, Windsor Locks, Conn. These subsystems are being integrated into an atmosphere revitalization group. This paper describes the integrated test configuration and the initial checkout test. The feasibility and design compatibility of these subsystems integrated into an air revitalization system is discussed.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

Growth of Super-Dwarf Wheat on the Russian Space Station MIR

1996-07-01
961392
During 1995, we tested instruments and attempted a seed-to-seed experiment with Super-Dwarf wheat in the Russian Space Station Mir. Utah instrumentation included four IR gas analyzers (CO2 and H2O vapor, calculate photosynthesis, respiration, and transpiration) and sensors for air and leaf (IR) temperatures, O2, pressure, and substrate moisture (16 probes). Shortly after planting on August 14, three of six fluorescent lamp sets failed; another failed later. Plastic bags, necessary to measure gas exchange, were removed. Hence, gases were measured only in the cabin atmosphere. Other failures led to manual watering, control of lights, and data transmission. The 57 plants were sampled five times plus final harvest at 90 d. Samples and some equipment (including hard drives) were returned to earth on STS-74 (Nov. 20). Plants were disoriented and completely vegetative. Maintaining substrate moisture was challenging, but the moisture probes functioned well.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Freeze Tolerant Radiator for Advanced EMU

2004-07-19
2004-01-2263
The current Extravehicular Mobility Unit (EMU) system provides thermal control using a sublimator to reject both the heat produced by the astronaut's metabolic activity as well as the heat produced by the Portable Life Support Unit (PLSS). This sublimator vents up to eight pounds of water each Extravehicular Activity (EVA). If this load could be radiated to space, the amount of water that would need to be sublimated could be greatly reduced. There is enough surface area on the EMU that almost all of the heat can be rejected by radiation. Radiators, however, reject heat at a relatively constant rate, while the astronaut generates heat at a variable rate. To accommodate this variable heat load, NASA is developing a new freeze tolerant radiator where the tubes can selectively freeze to “turn down” the radiator and adjust to the heat rejection requirement. This radiator design significantly reduces the amount of expendable water needed for the sublimator.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

2006-07-17
2006-01-2236
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Technical Paper

First Human Testing of the Orion Atmosphere Revitalization Technology

2009-07-12
2009-01-2456
A system of amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and is baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology, which was performed in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to use real human loads in the spring of 2008.
Technical Paper

Extravehicular Activity Metabolic Profile Development Based on Apollo, Skylab, and Shuttle Missions

1997-07-01
972502
The importance of being able to determine the usage rate of life support subsystem consumables was recognized well before the first Apollo Extravehicular Activity (EVA). Since that time, metabolic activity levels have been evaluated and recorded for each EVA crew member. Throughout the history of the United States space program, EVA metabolic rates have been shown to be variable depending upon the mission scenario and the equipment used. Knowing this historic information is invaluable for current EVA planning activities, as well as for the design of future Extravehicular Mobility Unit (EMU) systems. This paper presents an overview of historic metabolic expenditures for Apollo, Skylab, and Shuttle missions, along with a discussion of the types of EVA crew member activities which lead to various metabolic rate levels, and a discussion on how this data is being used to develop advanced EMU systems.
X